How Einstein’s Brain Was Stolen And Was Found To Be Different From The Rest?

April 18, 1955 was the day when we lost one of the greatest scientists and mathematicians of the 20th century, Albert Einstein. Einstein left the world at the age of 76. The Nobel prize-winning physicist who gave the world the theory of relativity, E = mc2, and the law of the photoelectric effect, obviously had a special brain. So special that when he died in Princeton Hospital, the pathologist on call, Thomas Harvey, stole it.

What happened with the brain?

Einstein didn’t want his brain or body to be studied; he didn’t want to be worshipped. “He had left behind specific instructions regarding his remains: cremate them, and scatter the ashes secretly in order to discourage idolaters,” writes Brian Burrell in his 2005 book, Postcards from the Brain Museum.

Harvey took the brain anyway, without any permission from Einstein’s family.

“When the fact came to light a few days later, Harvey managed to solicit a reluctant and retroactive blessing from Einstein’s son, Hans Albert, with the now-familiar stipulation that any investigation would be conducted solely in the interest of science,” Burrell writes.

Harvey soon lost his job at the Princeton hospital and took the brain to Philadelphia, where it was carved into 240 pieces and preserved in celloidin, a hard and rubbery form of cellulose. He divvied up the pieces into two jars and stored them in his basement. Harvey kept the brain with him and continued roaming place to place for performing scientific researchers on that brain.
Harvey made a friend named William Burroughs. The two men routinely met for drinks on Burroughs’s front porch. Harvey would tell stories about the brain, about cutting off chunks to send to researchers around the world. Burroughs, in turn, would boast to visitors that he could have a piece of Einstein any time he wanted.

Was the brain any different?

In the mid 1970s, Steven Levy, a reporter for the New Jersey Monthly, hopped into his car and set out to find Einstein’s brain. Mr. Levy published his story in 1978. Mr. Levy discovered that Einstein’s brain was still with Dr. Harvey who was now in Wichita, Kansas. The brain was in two mason jars in a cardboard box that was marked with the words “Costa Cider.” Most of the brain, except for the cerebellum and parts of the cerebral cortex, had been sectioned (sliced).
These scientists counted the number of neurons (nerve cells)and glial cells in four areas of Einstein’s brain: area 9 of the cerebral cortex on the right and left hemisphere and area 39 of the cerebral cortex on the right and left hemisphere. Area 9 is located in the frontal lobe (prefrontal cortex) and is thought to be important for planning behavior, attention and memory. Area 39 is located in the parietal lobe and is part of the “association cortex.” Area 39 is thought to be involved with language and several other complex functions. The ratios of neurons to glial cells in Einstein’s brain were compared to those from the brains of 11 men who died at the average age of 64.

The ratios of neurons to glial cells in Einstein’s brain, as compared to those in the 11 normal brains, were smaller in all four areas studied. However, when the numbers were examined more closely with statistics, only one area showed a significant difference – the ratio in the left area 39. In the left area 39, therefore, Einstein’s brain had fewer neurons to glial cells than the normal brains. In other words, there were more glial cells for every neuron in Einstein’s brain.

The authors concluded that the greater number of glial cells per neuron might indicate the neurons in Einstein’s brain had an increased “metabolic need” – they needed and used more energy. More recently, other researchers have noticed differences in glial cells in Einstein’s brain. In this way, perhaps Einstein had better thinking abilities and conceptual skills.


The importance of these differences is still unknown. There are still many questions about how the brain constructs personality, builds intelligence and forms creativity. Further research using modern brain imaging techniques (MRI/PET) that look at the anatomy and function of the brain in living geniuses may reveal what makes these people such giants and creates there infinite will power.


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s